# DIAGNOSIS OF HAEMOPHILIA

BY

EKEH, UCHECHI JULIET



## **SYNOPSIS**

- INTRODUCTION
- PRINCIPLES OF DIAGNOSIS
- CLINICAL DIAGNOSIS- HISTORY TAKING & CLINICAL FEATURES
- BASELINE (SCREENING) TESTS
- DEFINITIVE TESTS- FACTOR VIII AND IX ASSAY, GENETIC TESTING
- OTHER INVESTIGATIONS
- CONCLUSION.
- REFERENCES.

## INTRODUCTION

- Different bleeding disorders either inherited or acquired present with similar clinical features as seen in haemophilia.
- Thus, a correct diagnosis of haemophilia is essential to ensure that a patient gets appropriate treatment and management.
- The accurate diagnosis of haemophilia is based on;
  - 1. Family history of haemophilia.
  - 2. Clinical features/findings.
  - 3. Laboratory testing.

# PRINCIPLES OF HAEMOPHILIA DIAGNOSIS

- Understanding the clinical features of haemophilia.
- Use of laboratory screening tests.
- Confirmation of diagnosis.

## HISTORY OF HAEMOPHILIA DIAGNOSIS

- Then Rabbi and physician Maimonides in the XII century noted that the mothers were the carriers.
- In 1800 John Otto a physician in Philadelphia wrote a description of the disease where he clearly appreciated the cardinal features.
- "The disease of Kings".
- End of 19th century- crude assays, clotting time of plasma of haemophiliacs compared with non-bleeders.
- 1947-defect is single deficient plasma protein.
- Pavlosky: Mixing 2 sources of this plasmas- correction/Multiple types.
- Currently, automated factor assays and genetic testing.

## **CLINICAL DIAGNOSIS**

### HAEMOPHILIA SHOULD BE SUSPECTED IN PATIENTS WITH HISTORY OF

- Easy bruising in early childhood.
- Spontaneous bleeding (apparently no reasons previously) in joint ,muscles and soft tissue.
- Excessive bleeding after trauma or surgery.
- Family history of a bleeding disorder.

TABLE 45.1 CLINICAL DISTINCTION BETWEEN DISORDERS OF VESSELS OR PLATELETS AND DISORDERS OF BLOOD COAGULATION

| Finding                                      | Disorders of Coagulation                                                               | Disorders of Platelets or Vessels                                                 |
|----------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Petechiae                                    | Rare                                                                                   | Characteristic                                                                    |
| Deep dissecting<br>hematomas                 | Characteristic                                                                         | Rare                                                                              |
| Superficial ecchymoses                       | Common; usually large and solitary                                                     | Characteristic; usually small and multiple                                        |
| Hemarthrosis                                 | Characteristic                                                                         | Rare                                                                              |
| Delayed bleeding                             | Common                                                                                 | Rare                                                                              |
| Bleeding from superficial cuts and scratches | Minimal                                                                                | Persistent; often profuse                                                         |
| Sex of patient                               | 80%-90% of inherited forms Relatively more common in femal occur only in male patients |                                                                                   |
| Positive family history                      | Common                                                                                 | Rare (except von Willebrand disease and<br>hereditary hemorrhagic telangiectasia) |
| P.1044                                       |                                                                                        |                                                                                   |

# BASELINE INVESTIGATIONS

TABLE 3-1: INTERPRETATION OF SCREENING TESTS

| POSSIBLE DIAGNOSIS  | PT     | APTT*                | ВТ                  | PLATELET COUNT    |
|---------------------|--------|----------------------|---------------------|-------------------|
| Normal              | Normal | Normal               | Normal              | Normal            |
| Hemophilia A or B** | Normal | Prolonged*           | Normal              | Normal            |
| VWD                 | Normal | Normal or prolonged* | Normal or prolonged | Normal or reduced |
| Platelet defect     | Normal | Normal               | Normal or prolonged | Normal or reduced |

<sup>\*</sup> Results of APTT measurements are highly dependent on the laboratory method used for analysis.

<sup>\*\*</sup> The same pattern can occur in the presence of FXI, FXII, prekallikrein, or high molecular weight kininogen deficiencies.

# MIXING STUDIES

**APTT** – when prolonged, do correction studies.

- If corrected with factor IX haemophilia B
- If corrected with factor VIII haemophilia A

# Patient Plasma + Pooled normal plasma Immediate and incubated @37°C for 1 hour aPTT does Ø correct aPTT corrects

**Factor Deficiency** 

# **SPECIFIC/DEFINTIVE TESTS**

## Factor VIII & IX Assays

### 2 methods

- Clot-based assay; 1- stage or 2- stage assays
- Chromogenic assay.

## **Kaw Data**

| Sample                                               | Dilutions                        |                                 |                                 |                                  |
|------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|
|                                                      | 1/10<br>[100% FVIII<br>Activity] | 1/20<br>[50% FVIII<br>Activity] | 1/50<br>[20% FVIII<br>Activity] | 1/100<br>[10% FVIII<br>Activity] |
| APTT [s] Reference<br>Plasma<br>[FVIII:C = 95 IU/dL] | 28s                              | 32s                             | 38s                             | 42s                              |
| APTT [s] Patient Plasma                              | 55s                              | 59s                             | 73s                             | 80s                              |



### CHROMOGENIC METHOD

| Component                           | Explanation                                                                                                                                         |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Reagent cocktail for generating FXa | Contains FIXa, FX in excess, Thrombin [Factor IIa], a source of calcium ions and phospholipid                                                       |
| Chromogenic substrate               | A substance cleaved by FXa to produce a colour change. May also contain a Thrombin inhibitor to stop the FXa generation when the chromogen is added |
| Patient plasma                      | Platelet poor plasma                                                                                                                                |



The second secon

April 1



The second secon

## **GENETIC TESTING**

- Prenatal diagnosis
  - genetic consultation
  - choronic villi sampling, amniocentesis, cord blood sampling
- Mutation screening
  - screen for intron 22 inversion only in patients with severe haemophilia A

If negative for that, there is the need for DNA sequencing

- In mild to moderate hemophilia A, full sequencing of the FVIII gene.
- In hemophilia B, perform full sequencing of FIX gene.

## **CARRIER STATE DETECTION**

### Clinical method

- A woman is a definite carrier if;
- (i) her father has haemophilia.
- (ii) she has one son with haemophilia and a 1st degree male relative with haemophilia.
- (iii) she has two sons with haemophilia.
- A possible carrier if;
- (i) she has one or more maternal relatives with haemophilia.
- (ii) she has one son with haemophilia & no other affected relatives.

## Phenotypic method:

- FVIII:C assay.

## Genotypic method

- restriction endonuclease analysis.
- oligonucleotide probe analysis.

# OTHER INVESTIGATIONS

- X-rays of joints
- CT Scans
- MRI

# CONCLUSION

- Haemophilia is one of the commonest inherited bleeding disorders that can lead to numerous morbidities and in severe cases can lead to death.
- an accurate and definitive diagnosis will ensure that patients are appropriately treated to prevent these morbidities and complications associated with haemophilia, thus improving the quality of life of haemophiliacs.

# THANK YOU

# REFERENCES

- Guidelines for the Treatment of Haemophilia- World Federation of Haemophila 2005 (wfh.org)
- Rhona M, Maclean and Michael Makris Haemophilia A and B in Practical Haemostasis and Thrombosis 3rd edition.
- Rajiv K. Pruthi. Haemophilia: A Practical Approach to Genetic Testing. mayo clin proc. 2005;80(11):1485-1499